Predicting User-Cell Association in Cellular Networks from Tracked Data

نویسندگان

  • Katerina Dufková
  • Jean-Yves Le Boudec
  • Lukas Kencl
  • Milan Bjelica
چکیده

We consider the problem of predicting user location in the form of user-cell association in a cellular wireless network. This is motivated by resource optimization, for example switching base transceiver stations on or off to save on network energy consumption. We use GSM traces obtained from an operator, and compare several prediction methods. First, we find that, on our trace data, user cell sector association can be correctly predicted in ca. 80% of the cases. Second, we propose a new method, called “MARPL”, which uses Market Basket Analysis to separate patterns where prediction by partial match (PPM) works well from those where repetition of the last known location (LAST) is best. Third, we propose that for network resource optimization, predicting the aggregate location of a user ensemble may be of more interest than separate predictions for all users; this motivates us to develop soft prediction methods, where the prediction is a spatial probability distribution rather than the most likely location. Last, we compare soft predictions methods to a classical time and space analysis (ISTAR). In terms of relative mean square error, MARPL with soft prediction and ISTAR perform better than all other methods, with a slight advantage to MARPL (but the numerical complexity of MARPL is much less than ISTAR).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks

Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Backhaul-Aware Decoupled Uplink and Downlink User Association, Subcarrier Allocation, and Power Control in FiWi HetNets

Decoupling the uplink and downlink user association improves the throughput of heterogeneous networks (HetNets) and balances the traffic load of macro- and small- base stations. Recently, fiber-wireless HetNets (FiWi-HetNets) have been considered as viable solutions for access networks. To improve the accuracy of user association and resource allocation algorithms in FiWi-HetNets, the capacity ...

متن کامل

Mapping of TP53 protein network using cytoscape software

TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009